Load libraries

library(agricolae)
library(tidyverse)

Load csv file

irisdata <- read.csv("irisdata.csv") 

We can also import data directly from the website as follows:

irisdata <- read.csv('https://raw.githubusercontent.com/rbiology/rbiology.github.io/master/_data/irisdata.csv')

Now, we can check the structure of this dataset by:

str(irisdata)
## Classes 'tbl_df', 'tbl' and 'data.frame':	150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : chr  "setosa" "setosa" "setosa" "setosa" ...
##  - attr(*, "spec")=List of 2
##   ..$ cols   :List of 5
##   .. ..$ Sepal.Length: list()
##   .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
##   .. ..$ Sepal.Width : list()
##   .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
##   .. ..$ Petal.Length: list()
##   .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
##   .. ..$ Petal.Width : list()
##   .. .. ..- attr(*, "class")= chr  "collector_double" "collector"
##   .. ..$ Species     : list()
##   .. .. ..- attr(*, "class")= chr  "collector_character" "collector"
##   ..$ default: list()
##   .. ..- attr(*, "class")= chr  "collector_guess" "collector"
##   ..- attr(*, "class")= chr "col_spec"

The dimension of the dataset is:

dim(irisdata)
## [1] 150   6

This shows that there are 150 rows and 5 columns in the dataset

<– Click here to go to the previous tutorial                          Click here to go to the next tutorial –>